
Journal of Computational Physics 229 (2010) 2821–2839
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Wavelet-based density estimation for noise reduction in plasma
simulations using particles

Romain Nguyen van yen a, Diego del-Castillo-Negrete b,*, Kai Schneider c,
Marie Farge a, Guangye Chen b

a Laboratoire de Météorologie Dynamique-CNRS, École Normale Supérieure, Paris, France
b Oak Ridge National Laboratory, Oak Ridge, TN, USA
c Laboratoire de Mécanique, Modélisation et Procédés Propres-CNRS, and Centre de Mathématiques et d’Informatique Université d’Aix-Marseille, France
a r t i c l e i n f o

Article history:
Received 1 September 2009
Received in revised form 7 December 2009
Accepted 8 December 2009
Available online 4 January 2010

Keywords:
Particle methods
Wavelets
Noise reduction
Plasma physics computations
0021-9991/$ - see front matter � 2009 Elsevier Inc
doi:10.1016/j.jcp.2009.12.010

* Corresponding author. Tel.: +1 865 574 1127; fa
E-mail address: delcastillod@ornl.gov (D. del-Cas
a b s t r a c t

For given computational resources, the accuracy of plasma simulations using particles is
mainly limited by the noise due to limited statistical sampling in the reconstruction of
the particle distribution function. A method based on wavelet analysis is proposed and
tested to reduce this noise. The method, known as wavelet-based density estimation
(WBDE), was previously introduced in the statistical literature to estimate probability den-
sities given a finite number of independent measurements. Its novel application to plasma
simulations can be viewed as a natural extension of the finite size particles (FSP) approach,
with the advantage of estimating more accurately distribution functions that have local-
ized sharp features. The proposed method preserves the moments of the particle distribu-
tion function to a good level of accuracy, has no constraints on the dimensionality of the
system, does not require an a priori selection of a global smoothing scale, and its able to
adapt locally to the smoothness of the density based on the given discrete particle data.
Moreover, the computational cost of the denoising stage is of the same order as one time
step of a FSP simulation. The method is compared with a recently proposed proper orthog-
onal decomposition based method, and it is tested with three particle data sets involving
different levels of collisionality and interaction with external and self-consistent fields.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Particle-based numerical methods are routinely used in plasma physics calculations [1,2]. In many cases these methods
are more efficient and simpler to implement than the corresponding Eulerian methods. However, particle methods face the
well-known statistical sampling limitation of attempting to simulate a physical system containing N particles using Np � N
computational particles. Particle methods do not seek to reproduce the exact individual behavior of the particles, but rather
to approximate statistical macroscopic quantities like density, current, and temperature. These quantities are determined
from the particle distribution function. Therefore, a problem of relevance for the success of particle-based simulations is
the reconstruction of the particle distribution function from discrete particle data.

The difference between the distribution function reconstructed from a simulation using Np particles and the exact distri-
bution function gives rise to a discretization error generically known as ‘‘particle noise” due to its random-like character.
Understanding and reducing this error is a complex problem of importance in the validation and verification of particle
. All rights reserved.
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codes, see for example Refs. [3–5] and references therein for a discussion in the context of gyrokinetic calculations. One obvi-
ous way to reduce particle noise is by increasing the number of computational particles. However, the unfavorable scaling of
the error with the number of particles, � 1=

ffiffiffiffiffiffi
Np

p
[6,7], puts a severe limitation on this straightforward approach. This has

motivated the development of various noise reduction techniques including finite size particles (FSP) [8,9], Monte-Carlo
methods [7], weight spreading [10], Fourier-filtering [11], coarse-graining [12], Krook operators [5], smooth interpolation
[13], low noise collision operators [14], and Proper Orthogonal Decomposition (POD) methods [15] among others.

In the present paper we propose a wavelet-based method for noise reduction in the reconstruction of particle distribution
functions from particle simulation data. The method, known as wavelet-based density estimation (WBDE), was originally
introduced in Ref. [16] in the context of statistics to estimate probability densities given a finite number of independent mea-
surements. However, to our knowledge, this method has not been applied before to particle-based computations. WBDE, as
used here, is based on a truncation of the wavelet representation of the Dirac delta function associated with each particle.
The method yields almost optimal results for functions with unknown local smoothness without compromising computa-
tional efficiency, assuming that the particles’ coordinates are statistically independent. As a first step in the application of
the WBDE method to plasma particle simulations, we limit our attention to ‘‘passive denoising”. That is the WBDE method
is treated as a post-processing technique applied to independently generated particle data. The problem of ‘‘active denois-
ing”, e.g. the application of WBDE methods in the evaluation of self-consistent fields in particle in cell simulations, will not be
addressed. This simplification will allow us to assess the efficiency of the proposed noise reduction method in a simple set-
ting. Another simplification pertains the dimensionality. Here, for the sake of simplicity, we limit attention to the reconstruc-
tion and denoising problem in two dimensions. However, the extension of the WBDE method to higher dimensions is in
principle straightforward.

Collisions, or the absence of them, play an important role in plasma transport problems. Particle methods handle the col-
lisional and non-collisional parts of the dynamics differently. Fokker–Planck-type collision operators are typically introduced
in particle methods using Langevin-type stochastic differential equations. On the other hand, the non-collisional part of the
dynamics is described using deterministic ordinary differential equations. Collisional dominated problems tend to wash out
fine scale structures whereas collisionless problems typically develop fine scale filamentary structures in phase space. There-
fore, it is important to test how the efficiency of denoising depends on the level of collisionality. Here we test the WBDE
method in strongly collisional, weakly collisional and collisionless regimes. For the strongly collisional regime we consider
particle data of force-free collisional relaxation involving energy and pinch-angle scattering. The weakly collisional regime is
illustrated using guiding-center particle data of a magnetically confined plasma in toroidal geometry. The collisionless re-
gime is studied using particle-in-cell (PIC) data corresponding to bump-on-tail and two streams instabilities in the Vla-
sov–Poisson system.

Beyond the role of collisions, the data sets that we are considering open the possibility of exploring the role of external
and self-consistent fields in the reconstruction of the particle density. In the collisional relaxation problem, no forces act on
the particles. In the guiding-center problem particles interact with an external magnetic field. In the Vlasov–Poisson problem
particle interactions are incorporated through a self-consistent electrostatic mean field. One of the goals of this paper is to
compare the WBDE method with the Proper Orthogonal Decomposition (POD) density reconstruction method proposed in
Ref. [15].

The rest of the paper is organized as follows. In Section 2 we review the main properties of kernel density estimation
(KDE) and show its relationship with finite size particles (FSP). We then review basic notions on orthogonal wavelet and
multiresolution analysis and outline a step by step algorithm for WBDE. For completeness, we also include in this section
a brief description of the POD reconstruction method proposed in Ref. [15]. Section 3 discusses applications of the WBDE
method and the comparison with the POD method. We start by post-processing a simulation of plasma relaxation by random
collisions against a background thermostat. We then turn to a df Monte-Carlo simulation in toroidal geometry, whose phase
space has been reduced to two dimensions. Finally, we analyze the results of particle-in-cell (PIC) simulations of a 1D Vla-
sov–Poisson plasma. The conclusions are presented in Section 4.
2. Methods

This section presents the wavelet-based density estimation (WBDE) algorithm. We start by reviewing basic ideas on ker-
nel density estimation (KDE) which is closely related to the use of finite size particles (FSP) in PIC simulations. Following this,
we give a brief introduction to wavelet analysis and discuss the WBDE algorithm. For completeness, we also include a brief
summary of the POD approach.
2.1. Kernel density estimation

Given a sequence of independent and identically distributed measurements, the non-parametric density estimation prob-
lem consists in finding the underlying probability density function (PDF), with no a priori assumptions on its functional form.
Here we discuss general ideas on this difficult problem for which a variety of statistical methods have been developed. Fur-
ther details can be found in the statistics literature, e.g. Ref. [17].
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Consider a number Np of statistically independent particles with phase space coordinates ðXnÞ16n6Np
distributed in Rd

according to a PDF f. These data can come from a PIC or a Monte-Carlo, full f or df simulation. Formally, the sample PDF
can be written as
f dðxÞ ¼ 1
Np

XNp

n¼1

dðx� XnÞ ð1Þ
where d is the Dirac distribution. Because of its lack of smoothness, Eq. (1) is far from the actual distribution f according to
most reasonable definitions of the error. The dependence of f d on the statistical fluctuations in ðXnÞ can lead to an artificial
increase of the collisionality, which could be problematic in the modeling of near collisionless plasmas of interest to con-
trolled fusion. Beyond introducing dissipation, noise can lead to other problems including self-heating and momentum
spread which, for example, is known to be an issue in laser–plasma interaction computations. Also, computations involving
derivatives of f, like for example quasilinear fluxes in wave–particle interaction calculations, can be compromised by poor
reconstruction techniques.

The simplest method to introduce some smoothness in f d is to use a histogram. Consider a tiling of the phase space by a
Cartesian grid with Nd

g cells. Let fBkgk2K denote the set of all cells with characteristic function vk defined as vk ¼ 1 if x 2 Bk and
vk ¼ 0 otherwise. Then the histogram corresponding to the tiling is
f HðxÞ ¼
X
k2K

1
Np

XNp

n¼1

vkðXnÞ
 !

vkðxÞ ð2Þ
which can also be viewed as the orthogonal projection of f d on the space spanned by the vk. The main difference between f d

and f H is that the latter cannot vary at scales finer than the grid scale which is of order N�1
g . By choosing Ng small enough, it is

therefore possible to reduce the variance of f H to very low levels, but the estimate then becomes more and more biased to-
wards a piecewise continuous function, which is not smooth enough to be the true density. Histograms correspond to the
nearest grid point (NGP) charge assignment scheme used in the early days of plasma physics computations [8].

One of the most popular methods to achieve higher level of smoothness is kernel density estimation (KDE) [18]. Given
ðXnÞ16n6Np

, the kernel estimate of f is defined as
f KðxÞ ¼ 1
Np

XNp

n¼1

Kðx� XnÞ ð3Þ
where the smoothing kernel K is a positive function, normalized such that
R

K ¼ 1. Eq. (3) corresponds to the convolution of K
with the Dirac delta measure corresponding to each particle. A typical example is the Gaussian kernel
KhðxÞ ¼
1

ð
ffiffiffiffiffiffiffi
2p
p

hÞd
e�
kxk2

2h2 ð4Þ
where the so-called ‘‘bandwidth”, or smoothing scale, h, is a free parameter. The optimal smoothing scale depends on how
the error is measured. For example, in the one-dimensional case, to minimize the mean L2-error between the estimate and
the true density, the smoothing volume hd should scale like N

�1
5

p , and the resulting error scales like N
�2

5
p [17]. As in the case of

histograms, the choice of h relies on a trade-off between variance and bias. In the context of plasma physics simulations the
kernel K corresponds to the charge assignment function [2].

A significant effort has been devoted to the choice of the function K since it has a strong impact on computational effi-
ciency and on the conservation of global quantities. Concerning h, it has been shown that it should not be much larger than
the Debye length kD of the plasma to obtain a realistic and stable simulation [1]. Given a certain amount of computational
resources, the general tendency has thus been to reduce h as far as possible in order to fit more Debye lengths inside the
simulation domain, which means that the effort has been concentrated on reducing the bias term in the error. Since the force
fields depend on f through integral equations, like the Poisson equation, that tend to reduce the high wavenumber noise, we
do not expect the disastrous scaling h / N

�1
5

p , which would mean Np / k5d
D in d dimensions, to hold. Nevertheless, the problem

remains that if we want to preserve high resolution features of f or of the electromagnetic fields, we need to reduce h, and
therefore greatly increase the number of particles to prevent the simulation from drowning into noise. Bandwidth selection
has long been recognized as the central issue in kernel density estimation [19]. We are not aware of a theoretical or numer-
ical prediction of the optimal value of h taking into account the noise term. To bypass this difficulty, it is possible to use new
statistical methods which do not force us to choose a global smoothing parameter. Instead, they adapt locally to the behavior
of the density f based on the available data. Wavelet based-density estimation, which we will introduce in the next two sec-
tions, is one of these methods.

2.2. Bases of orthogonal wavelets

Wavelets are a standard mathematical tool to analyze and compute non-stationary signals. Here we recall basic concepts
and definitions. Further details can be found in Ref. [20] and references therein. The construction takes place in the Hilbert
space L2ðRÞ of square integrable functions. An orthonormal family ðwj;iðxÞÞj2N;i2Z is called a wavelet family when its members
are dilations and translations of a fixed function w called the mother wavelet:
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wj;iðxÞ ¼ 2j=2wð2jx� iÞ ð5Þ
where j indexes the scale of the wavelets and i their positions, and w satisfies
R

w ¼ 0. In the following we shall always as-
sume that w has compact support of length S. The coefficients hf jwj;ii ¼

R
f wj;i of a function f for this family are denoted by

ð~f j;iÞ. These coefficients describe the fluctuations of f at scale 2�j around position i
2j. Large values of j correspond to fine scales,

and small values to coarse scales. Some members of the commonly used Daubechies 6 wavelet family are shown in the left
panel of Fig. 1.

It can be shown that the orthogonal complement in L2ðRÞ of the linear space spanned by the wavelets is itself orthogo-
nally spanned by the translates of a function u, called the scaling function. Defining
uL;i ¼ 2
L
2uð2Lx� iÞ ð6Þ
and the scaling coefficients �f L;i ¼ hf juL;ii, one thus has the reconstruction formula:
f ¼
X1

i¼�1

�f L;iuL;i þ
X1
j¼L

X1
i¼�1

~f j;iwj;i ð7Þ
The first sum on the right-hand side of Eq. (7) is a smooth approximation of f at the coarse scale, 2�L, and the second sum
corresponds to the addition of details at successively finer scales.

If the wavelet w has M vanishing moments:
Z
xmwðxÞdx ¼ 0 ð8Þ
for 0 6 m < M, and if f is locally m times continuously differentiable around some point x0, then a key property of the wavelet
expansion is that the coefficients located near x0 decay like 2�jðmþ1

2Þ when j!1 [21]. Hence, localized singularities or sharp
features in f affect only a finite number of wavelet coefficients within each scale. Another important consequence of (8) of
special relevance to particle methods is that, for 0 6 m < M, the moments

R
xmf ðxÞdx of the particle distribution function de-

pend only on its scaling coefficients, and not on its wavelet coefficients.
If the scaling coefficients �f J;i at a certain scale J are known, all the wavelet coefficients at coarser scales ðj 6 JÞ can be com-

puted using the fast wavelet transform (FWT) algorithm [22]. We shall address the issue of computing the scaling coeffi-
cients themselves in Section 2.4.

The generalization to d dimensions involves tensor products of wavelets and scaling functions at the same scale. For
example, given a wavelet basis on R, a wavelet basis on R2 can be constructed in the following way:
w1
j;i1 ;i2
ðx1; x2Þ ¼ 2jwð2jx1 � i1Þuð2jx2 � i2Þ ð9Þ

w2
j;i1 ;i2
ðx1; x2Þ ¼ 2juð2jx1 � i1Þwð2jx2 � i2Þ ð10Þ

w3
j;i1 ;i2
ðx1; x2Þ ¼ 2jwð2jx1 � i1Þwð2jx2 � i2Þ ð11Þ
where we refer to the exponent l ¼ 1;2;3 as the direction of the wavelets. This name is easily understood by looking at dif-
ferent wavelets shown in Fig. 1 (right). The corresponding scaling functions are simply given by 2juð2jx1 � i1Þuð2jx2 � i2Þ.
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Daubechies 6 wavelet family. Left, bold red: scaling function u at scale j ¼ 5. Left, bold blue: wavelet w at scale j ¼ 5. Left, thin black, from left to
avelets at scales 6, 7, 8 and 9. Right: (a) 2D scaling function uðx1Þuðx2Þ. (b) first 2D wavelet wðx1Þuðx2Þ. (c) Second 2D wavelet uðx1Þwðx2Þ. (d) Third
elet wðx1Þwðx2Þ. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Wavelets on Rd are constructed exactly in the same way, but this time using 2d � 1 directions. To lighten the notation we
write the d-dimensional analog of Eq. (7) as
f ¼
X

k2K/;L

�f k/k þ
X

k2Kw;L

~f kwk ð12Þ
where k ¼ ðj; i;lÞ is a multi-index, with the integer j denoting the scale and the integer vector i ¼ ði1; i2; . . .Þ denoting the
position of the wavelet and the scaling function and where K/;L ¼ fðj; i;lÞjj ¼ L;1 6 i1; . . . ; id 6 2j;l ¼ 1;2d � 1g and
Kw;L ¼ ðj; i;lÞjj ¼ 1; . . . ; L;1 6 i1; . . . ; id 6 2j;l ¼ 1;2d � 1g are the corresponding index sets.

The wavelet multiresolution reconstruction formula in Eq. (7) involves an infinite sum over the position index i. One way
of dealing with this sum is to determine a priori the non-zero coefficients in Eq. (7), and work only with these coefficients,
but still retaining the full wavelet basis on Rd as presented above. An alternative, which we have chosen because it is easier
to implement, is to periodize the wavelet transform on a bounded domain [22]. Assuming that the coordinates have been
rescaled so that all the particles lie in ½0;1�d, we replace the wavelets and scaling functions by their periodized counterparts:
wj;iðxÞ !
X1

l¼�1
wj;iðxþ lÞ ð13Þ

uj;iðxÞ !
X1

l¼�1
uj;iðxþ lÞ ð14Þ
Throughout this paper we will consider only periodic wavelets. For the sake of completeness we mention a third alternative
which is technically more complicated. It consists in constructing a wavelet basis on a bounded interval [23]. The advantage
of this approach is that it does not introduce artificially large wavelet coefficients at the boundaries for functions f that are
not periodic.

2.3. Wavelet-based density estimation

The multiscale nature of wavelets allows them to adapt locally to the smoothness of the analyzed function [22]. This fun-
damental property has triggered their use in a variety of problems. One of their most fruitful applications has been the deno-
ising of intermittent signals [24]. The practical success of wavelet thresholding to reduce noise relies on the fact that the
expansion of signals in a wavelet basis is typically sparse. Sparsity means that the interesting features of the signal are well
summarized by a small fraction of large wavelet coefficients. On the contrary, the variance of the noise is spread over all the
coefficients appearing in Eq. (12). Although the few large coefficients are of course also affected by noise, curing the noise in
the small coefficients is already a very good improvement. The original setting of this technique, hereafter referred to as glo-
bal wavelet shrinkage, requires the noise to be additive, stationary, Gaussian and white. It found a first application in plasma
physics in Ref. [25], where coherent bursts were extracted out of plasma density signals. Since Ref. [24], wavelet denoising
has been extended to a number of more general situations, like non-Gaussian or correlated additive noise, or to denoise the
spectra of locally stationary time series [26]. In particular, the same ideas were developed in Ref. [27,16] to propose a wave-
let-based density estimation (WBDE) method based on independent observations. At this point we would like to stress that
WBDE assumes nothing about the Gaussianity of the noise, nor on its stationarity. In fact, under the independence hypoth-
esis – which is admittedly quite strong – the statistical properties of the noise are entirely determined by standard proba-
bility theory. We refer to Ref. [28] for a review on the applications of wavelets in statistics. In Ref. [29], global wavelet
shrinkage was applied directly to the charge density of a 2D PIC code, in a case were the statistical fluctuations were quasi
Gaussian and stationary. In particular, an iterative algorithm [30], which crucially relies on the stationnarity hypothesis, was
used to determine the level of fluctuations. However,in the next section we will show an example where the noise is clearly
non-stationary, and this procedure fails.

Let us now describe the WBDE method as we have generalized it to several dimensions. The first step is to expand the
sample particle distribution function, f d, in Eq. (1) in a wavelet basis according to Eq. (12) with the wavelet coefficients
�f d
k ¼ hf djuki ¼

1
Np

XNp

n¼1

ukðXnÞ ð15Þ

~f d
k ¼ hf djwki ¼

1
Np

XNp

n¼1

wkðXnÞ ð16Þ
Since this reconstruction is exact, keeping all the wavelet coefficients does not improve the smoothness of f d. The simple and
yet efficient remedy consists in keeping only a subset of the wavelet coefficients in Eq. (12). A straightforward prescription
would be to discard all the wavelet coefficients at scales finer than a cut-off scale L. This approach corresponds to a gener-
alization of the histogram method in Eq. (2) with Ng ¼ 2L. Because the characteristic functions vk of the cells in a dyadic grid
are the scaling functions associated with the Haar wavelet family, Eqs. (12) and (2) are in fact equivalent for this wavelet
family. Accordingly, like in the histogram case, we would have to choose L quite low to obtain a stable estimate, at the risk
of losing some sharp features of f. Better results can be obtained by keeping some wavelet coefficients down to a much finer
scale J > L. However, to prevent that statistical fluctuations contaminate the estimate, only those coefficients whose modulus
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are above a certain threshold should be kept. We are thus naturally led to a nonlinear thresholding procedure. In the
one-dimensional case, values of J, L, and of the threshold within each scale that yield theoretically optimal results have been
given in Ref. [16]. This reference discusses the precise smoothness requirements on f, which can accommodate well localized
singularities, like shocks and filamentary structures known to arise in collisionless plasma simulations. There remains the
question of how to compute the wavelet coefficients ~f j;i based on the positions of the particles. Although more accurate
methods based on (16) may be developed in the future, our present approximation relies on the computation of a histogram,
which creates errors of order N�1

g . The complete procedure is described in the following Wavelet-based density estimation
algorithm:

1. construct a histogram f H of the particle data with Ng ¼ 2Jg cells in each direction,
2. approximate the scaling coefficients at the finest scale Jg by:
�f Jg ;i ’ 2�Jg=2f Hð2�Jg iÞ ð17Þ
3. compute all the needed wavelet coefficients using the FWT algorithm,

4. keep all the coefficients for scales coarser than L, defined by 2dL � N
1

1þ2r0
p where r0 is the order of regularity of the wavelet

(1 in our case),
5. discard all the coefficients for scales strictly finer than J defined by 2dJ � Np

log2Np
,

6. for scales j in between L and J, keep only the wavelet coefficients ~f k such that j~f kjP Tj ¼ C
ffiffiffiffi
j

Np

q
where C is a constant that

must in principle depend on the smoothness of f and on the wavelet family [16].

The choice of parameters for the algorithm was justified rigourously in [16]. The dependence of the threshold on Np and j
can be intuitively understood as follows. Since the particles are assumed to be statistically independent, the standard devi-
ation of each wavelet coefficient is proportional to 1ffiffiffiffi

Np
p . Because of the L2 normalization of the wavelets (see (5)), the standard

deviation is to a good approximation scale-independent. On the other hand, the central limit theorem implies that the fluc-
tuations are almost Gaussian provided the number of particles is large enough. Therefore, to filter the fluctuations, the
threshold should be larger than the typical value taken by a Gaussian random variable with standard deviation r � 1ffiffiffiffi

Np
p .

A standard choice to ensure this level of denoising is to take the threshold proportional to r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnðMÞ

p
, where M is the number

of samples [22]. Since there are 2dj wavelet coefficients at scale j, we get a threshold proportional to r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2dj

p
¼ C

ffiffiffiffiffiffiffiffiffiffiffi
1=Np

p ffiffi
j

p
.

In the following, except otherwise indicated, we will assume the proportionality constant to be, C ¼ 1
2. For the wavelet bases

we used orthonormal Daubechies wavelets with 6 vanishing moments and thus support of size S ¼ 12 [31]. In our case,
r0 ¼ 1, which means that the wavelets have a first derivative but no second derivative, and the size of the wavelets at scale

L for d ¼ 1 is roughly N
�1

3
p . Since Np � 1, it follows from the definition at stage 5 of the algorithm that the size of the wavelets

at scale J is orders of magnitude smaller than N
�1

3
p . Using the adaptive properties of wavelets, we are thus able to detect fine

scale structures of f without compromising the stability of the estimate. Note that the error at stage 2 could be reduced by
using Coiflets [32] instead of Daubechies wavelets, but the gain would be negligible compared to the error made at stage 1.
We will denote the WBDE estimate of f as f W . In the one-dimensional case,
f W ¼
X2L

i¼1

�f L;iuL;i þ
XJ

j¼L

X2j

i¼1

qjð~f j;iÞwj;i ð18Þ
where qj is the thresholding function as defined by stage 6 of the algorithm: qjðyÞ ¼ 0 if jyj 6 Tj and qjðyÞ ¼ y otherwise.
Finally, let us propose two methods for applying WBDE to postprocess df simulations. Recall that the Lagrangian equa-

tions involved in the df schemes are identical to their full f counterparts. The only difficulty introduced by the df method
lies in the evaluation of phase space integrals of the form dI ¼

R
A � ðf � f0Þ, where A is a function on phase space and f0 is

a known reference distribution function. In these integrals, f � f0 should be replaced by df , which is in turn written as a prod-
uct wf, where w is a ‘‘weighting” function. Numerically, w is known via its values at particles positions, wðXnÞ, and the usual
expression for dI is thus dI ¼

PNp
n¼1AðXnÞwðXnÞ. We cannot apply WBDE directly to df , since this function is not a density func-

tion. An elegant approach would be to first apply WBDE to the unweighted distribution f d to determine the set of statistically
significant wavelet coefficients, and to include the weights only in the final reconstruction (18) of f W . A simpler approach,
which we will illustrate in Section 3.2, consists in renormalizing df , so that

R
jdf j ¼ 1, and treating it like a density.

2.4. Further issues related to practical implementation

In this section we discuss how the WBDE method handles two issues of direct relevance to plasma simulations: conser-
vation of moments and computational efficiency. As mentioned before, due to the vanishing moments of the wavelets in Eq.
(8), the moments up to order M of the particle distribution are solely determined by its scaling function coefficients. As a
consequence, we expect the thresholding procedure to conserve these moments, in the sense that
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MW
m;k ¼

Z
xm

k f WðxÞdx ’
Z

xm
k f dðxÞdx ¼Md

m;k ð19Þ
for 0 6 m 6 M � 1 and for all i 2 f1; . . . ; dg. This conservation holds up to round-off error if the wavelet coefficients can be
computed exactly. Due to the type of wavelets that we have used, we were not able to achieve this in the results presented
here. There remains a small error related to stages 1 and 2 of the algorithm, namely the construction of f H and the approx-
imation of the scaling function coefficients by Eq. (17). They are both of order N�1

g . We will present numerical examples of
the moments of f W in the next section.

Conservation of moments is closely related to a peculiarity of the denoised distribution function resulting from the WBDE
algorithm: it is not necessarily everywhere positive. Indeed, wavelets are oscillating functions by definition, and removing
wavelet coefficients therefore cannot preserve positivity in general. Further studies are needed to assess if this creates
numerical instabilities when f W is used in the computation of self-consistent fields. The same issue was discussed in Ref.
[33] where a kernel with two vanishing moments was used to linearly smooth the distribution function. The fact that this
kernel is not everywhere positive was not considered harmful in this reference. We acknowledge that it may render the
resampling of new particles from f W , if it is needed in the future, more difficult. There are ways of forcing f W to be positive,
for example by applying the method to

ffiffiffi
f

p
and then taking the square of the resulting estimate, but this implies the loss of

moment conservation, and we have not pursued in this direction.
The number of multiplications required to perform forward and inverse wavelet transforms between scales J and L using

the FWT algorithm in d dimensions is 4dS2dðJ�LÞ, where S is the length of the wavelet filter (12 for the Daubechies filter that

we are using). From the definitions of J and L it follows that 2dðJ�LÞ � N
2
3
p=log2Np. Thus, for a simulation in d dimensions involv-

ing Np ¼ 10m particles, the number of operations scales as � ð4Sdlog102=mÞ � 102m=3. For example, for a 2-dimensional sim-

ulation with 107 particles, J ¼ 10 and L ¼ 4. In this case, the computation of the wavelet coefficients require � 1:5� 106

multiplications which takes about 0.3 s of CPU time on a desktop computer. For a more demanding 4-dimensional simulation
with 108 particles, we find that J ¼ 6 and L ¼ 3, which increases the number of multiplications to 12:5� 106. The cost of the
binning stage is of order Np, so that the total number of operations for computing f W is proportional to Np, but overall the
number of multiplications per particle remains small. On the other hand, advancing the particles in time is likely to require
several multiplications per particle. If one wishes to use a finer grid to ensure high accuracy conservation of moments, the

storage requirement grows like Nd
g . Thanks to optimized in-place algorithms, the amount of additional memory needed dur-

ing the computation does not exceed 3S. Also, an important issue that needs to be kept in mind is that the FWT algorithm
requires Ng to be an integer multiple of 2J�L. For comparison purposes, let us recall that most algorithms to compute the POD

in 2 dimensions have a complexity proportional to N3
g , in addition to the order Np cost of binning.

To conclude this subsection, Fig. 2 presents an example of the reconstruction of a 1D discontinuous density that illustrates
the difference between the KDE and WBDE methods. The probability density function is uniform on the interval 1

3 ;
2
3

� �
and the

estimates were computed on [0,1] to include the discontinuities. The sample size was 214, and the binning used Ng ¼ 216

cells to compute the scaling function coefficients. For this 1D case the value C ¼ 2 was used to determine the thresholds (step
6 of the algorithm). The KDE estimate is computed using a Gaussian kernel with smoothing scale h ¼ 0:0138 [34]. The rel-
ative mean square errors associated with the KDE and WBDE estimates are, respectively, 19:6� 10�3 and 6:97� 10�3. The
error in the KDE estimate comes mostly from the smoothing of the discontinuities. The better performance of WBDE stems
from the much sharper representation of these discontinuities. It is also observed that the WBDE estimate is not everywhere
positive. The approximate conservation of moments is demonstrated on Table 1. Note that the error on all these moments for
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Table 1
Relative absolute difference between the moments of f d and those of f K and f W , for the distribution function corresponding to Fig. 2.

m ¼ 0 m ¼ 1 m ¼ 2 m ¼ 4

f K 1:81 � 10�5 1:70 � 10�5 7:52 � 10�4 3:90 � 10�3

f W 1:08 � 10�11 1:52 � 10�5 2:93 � 10�5 5:52 � 10�5
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f W could be made arbitrary low by increasing Ng . The overshoots could also be mitigated by using nearly shift invariant
wavelets [35].

2.5. Proper orthogonal decomposition method

For completeness, in this subsection we present a brief review of the POD density reconstruction method. For the sake of
comparison with the WBDE method, we limit attention to the time independent case. Further details, including the recon-
struction of time dependent densities using POD methods can be found in Ref. [15].

The first step in the POD method is to construct the histogram f H from the particle data. This density is represented by an
Nx � Ny matrix f̂ ij containing the fraction of particles with coordinates ðx; yÞ such that Xi 6 x < Xiþ1 and Yi 6 y < Yiþ1. In two
dimensions, the POD method is based on the singular value decomposition (SVD) of the histogram. According to the SVD
theorem [37], the matrix f̂ can always be factorized as f̂ ¼ UWVt , where U and V are Nx � Nx and Ny � Ny orthogonal matrices,
UUt ¼ VVt ¼ I, and W is a diagonal matrix, W ¼ diagðw1;w2; . . . wNÞ, such that w1 P w2 P � � �P wN P 0 with
N ¼minðNx;NyÞ.

In vector form, the decomposition can be expressed as
f̂ ij ¼
XN

k¼1

wkuðkÞi v ðkÞj ð20Þ
where the Nx-dimensional vectors, uðkÞi , and the Ny-dimensional vectors, v ðkÞj , are the orthonormal POD modes and correspond
to the columns of the matrices U and V, respectively. Given the decomposition in Eq. (20), we define the rank-r approxima-
tion of f̂ as
f̂ ðrÞij ¼
Xr

k¼1

wkuðkÞi v ðkÞj ð21Þ
where 1 6 r < N, and define the corresponding rank-r reconstruction error as
eðrÞ ¼ kf̂ � f̂ ðrÞk2 ¼
XN

i¼rþ1

w2
i ð22Þ
where kAk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiP

ijA
2
ij

q
is the Frobenius norm. Since f̂ ðr¼NÞ ¼ f̂ , we define eðNÞ ¼ 0. The key property of the POD is that the

approximation in Eq. (21) is optimal in the sense that
eðrÞ ¼min kf̂ � gk2jrankðgÞ ¼ r
n o

ð23Þ
That is, of all the possible rank-r Cartesian product approximations of f̂ ; f̂ ðrÞ is the closest to f̂ in the Frobenius norm.
The SVD spectrum, fwkg, of noise free coherent signals decays very rapidly after a few modes, but the spectrum of noise

dominated signals is relatively flat and decays very slowly. When a coherent signal is contaminated with low level noise, the
SVD spectrum exhibits an initial rapid decay followed by a weakly decaying spectrum known as the noisy plateau. In the POD
method the denoised density is defined as the truncation f P ¼ f̂ ðrcÞ, where rc corresponds to the rank where the noisy plateau
starts. In general it is difficult to provide a precise a priori estimate of rc , and this is one of the potential limitations of the POD
method. One possible quantitative criterion used in Ref. [15] is to consider the relative decay of the spectrum,
DðkÞ ¼ ðwkþ1 �wkÞ=ðw2 �w1Þ, for k > 1, and define rc by the condition DðrcÞ 6 Dc where Dc is a predetermined threshold.

3. Applications

In this section, we apply the WBDE method to reconstruct and denoise the particle distribution function starting from
discrete particle data. The data corresponds to three different groups of simulations: collisional thermalization with a back-
ground plasma, guiding center transport in toroidal geometry, and Vlasov–Poisson electrostatic instabilities. We will com-
pare the WBDE and POD methods in all three cases. Note that the first two groups of simulations were already analyzed
using POD methods in Ref. [15]. The third group, which is new here, allows the testing of the reconstruction algorithms
in a collisionless system that incorporates the self-consistent evaluation of the forces acting on the particles, as opposed
to the collisional, test particle problems analyzed before. When comparing the two methods, it is important to keep in mind
that POD has one free parameter, namely the number r of singular vectors that are retained to reconstruct the denoised
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distribution function. In the cases studied here, we used a best guess for r based on the properties of the reconstruction. In
Ref. [15] the POD method was developed and applied to time independent and time dependent data sets. However, in the
comparison with the WBDE method, we limit attention to 2-dimensional time independent data sets.

The accuracy of the reconstruction of the density at a fixed time t will be monitored using the mean square error
e ¼
X

i;j

jf estðxi; yj; tÞ � f ref ðxi; yj; tÞj2 ð24Þ
where ðxi; yjÞ are the coordinates of the nodes of a prescribed Ng � Ng grid in phase space, and f est denotes the estimated den-
sity computed from a sample with Np particles. For the WBDE method f est ¼ f W , and for the POD method f est ¼ f P . In prin-
ciple, the reference density, f ref , in Eq. (24) should be the density function obtained from the exact solution of the
corresponding continuum model, e.g. the Fokker–Planck or the Vlasov–Poisson system. However, when no explicit solution
is available, we will set f ref ¼ f H , where f H is the histogram corresponding to a simulation with a maximum number of par-
ticles available, which in the cases reported here correspond to Np ¼ 106. We will also use the normalized error
e0 ¼
eP

i;jjf ref ðxi; yj; tÞj2
ð25Þ
3.1. Collisional thermalization with a background plasma

This first example models the relaxation of a non-equilibrium plasma by collisional damping and pitch angle scattering on
a thermal background. The plasma is spatially homogeneous and is represented by an ensemble of Np particles in a three-
dimensional velocity space. Assuming a strong magnetic field, the dynamics can be reduced to two degrees of freedom: the
magnitude of the particle velocity, v, and the particle pitch, k ¼ cos h, where h is the angle between the particle velocity and
the magnetic field. In the continuum limit the particle distribution function is governed by the Fokker–Planck equation,
which in the particle description corresponds to the stochastic differential equations
dk ¼ �kmDdt �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mDð1� k2Þ

q
dgk ð26Þ

dv ¼ � amsv �
1

2v2

d
dv mkv4� �� �

dt þ
ffiffiffiffiffiffiffiffiffiffi
v2mk

q
dgv ð27Þ
describing the evolution of v 2 ð0;1Þ and k 2 ½�1;1� for each particle, where dgk and dgv are independent Wiener stochastic
processes and mD; ms and mk are functions of v. For further details on the model see Ref. [15] and references therein.

We considered simulations with Np ¼ 103;104;105 and 106 particles. The initial conditions of the ensemble of particles
were obtained by sampling a distribution of the form
f ðv ; k; t ¼ 0Þ ¼ Av2 exp �1
2
ðk� k0Þ2

r2
k

þ ðv � v0Þ2

r2
v

" #( )
ð28Þ
where a v2 factor has been included in the definition of the initial condition so that the volume element is simply dvdl;A is a
normalization constant, k0 ¼ 0:25; v0 ¼ 5; rk ¼ 0:25 and rv ¼ 0:75. This relatively simple problem is particularly well sui-
ted for the WBDE method because the simulated particles do not interact and therefore statistical correlations cannot build-
up between them.

Before applying the WBDE method, we analyze the sparsity of the wavelet expansion of f d, and compare the number of
modes kept and the reconstruction error for different thresholding rules. The plot in the upper left panel of Fig. 3 shows the
absolute values of the wavelet coefficients in decreasing order at different fixed times. The wavelet coefficients exhibit a
clear rapid decay beyond the few significant modes corresponding to the gross shape of the Maxwellian distribution. A sim-
ilar trend is observed in the coefficients of the POD expansion shown in the upper right panel of Fig. 3. However, in the wave-
let case the exponential decay starts after more than 100 modes, whereas in the POD case the exponential decay starts after
only one mode.

The two panels at the bottom of Fig. 3 show the square root of the reconstruction error normalized by Ng ;
ffiffiffi
e
p

=N2
g , in the

WBDE and POD methods. Because in this case we do not have access to the exact solution of the corresponding Fokker–
Planck equation at the prescribed time, we used f H computed using Np ¼ 106 particles as the reference density f ref in Eq.
(24). The error observed when applying a global threshold to the wavelet coefficients (bottom left panel in Fig. 3) is minimal
when around 100 modes are kept whereas in the POD case (bottom right panel in Fig. 3) the minimal error is reached with
about two or three modes. Fig. 3 also shows the wavelet threshold obtained by applying the iterative algorithm based on the
stationary Gaussian white noise hypothesis [30,25]. The error corresponding to this threshold is larger than the optimal error
because the noise in this problem is very non-stationary due to the lack of statistical fluctuations in the regions were par-
ticles are absent. In contrast, the error corresponding to the WBDE procedure (dash-dotted line in Fig. 3) is typically smaller
than the optimal error obtained by global thresholding. This is not a contradiction, because the WBDE procedure is not a
global threshold, but a level dependent threshold.
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Fig. 3. Wavelet and POD analyses of collisional relaxation particle data at different fixed times, with Np ¼ 105. Top left: absolute values of the wavelet
coefficients sorted by decreasing order (full lines), and thresholds given by the global wavelet shrinkage algorithm (dashed lines). Top right: POD singular
values of the histogram used to construct f P . Bottom left: error estimate e1=2

N2
g

with respect to the run for Np ¼ 106 as a function of the number of retained
wavelet coefficients (full lines), error obtained when using the global wavelet shrinkage threshold (dashed lines), and error obtained using the WBDE
method (dash-dotted lines). Bottom right: error estimate e1=2

N2
g

for f P as a function of the number l of retained POD singular values.
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Fig. 4 compares at different times the densities estimated with the WBDE and the POD (retaining only three modes) meth-
ods using Np ¼ 105 particles with the histograms computed using Np ¼ 105 and 106 particles. The key feature to observe is
that the level of smoothness of f W and f P corresponding to Np ¼ 105 is similar, if not greater, than the level of smoothness in
f H computed using ten times more particles, i.e. Np ¼ 106 particles. Table 2 summarizes the normalized reconstruction errors
for Np ¼ 105 according to Eq. (24) using f H with Np ¼ 106 as f ref . The WBDE and POD denoising methods offer a significant
improvement, approximately by a factor 2, over the raw histogram method.

A more detailed comparison of the estimates can be achieved by focusing on the Maxwellian final equilibrium state
fMðvÞ ¼
2ffiffiffiffi
p
p v2e�v2 ð29Þ
where, as in Eq. (28), the v2 metric factor has been included in the definition of the distribution. For these calculations we
considered sets of particles sampled from Eq. (29) in the compact domain ½�1;1� � ½0;4�. Since fM is an exact equilibrium
solution of the Fokker–Planck equation, the ensemble of particles is in statistical equilibrium but it exhibits fluctuations
due to the finite number of particles. Fig. 5 shows the dependence of the square root of the reconstruction error, e (normal-
ized by N2

g ) on the number of particles Np and the grid resolution Ng for the WBDE and POD methods. The main advantage of
this example is that the exact density f M can be used as the reference density f ref in the evaluation of the error.
3.2. Collisional guiding center transport in toroidal geometry

The previous example focused on collisional dynamics. However, in addition to collisions, plasma transport involves
external and self-consistent electromagnetic fields and it is of interest to test the particle density reconstruction algorithms
in these more complicated settings. As a first step for solving this challenging problem, we consider a plasma subject to col-
lisions and an externally applied fixed magnetic field in toroidal geometry. The choice of the field geometry and structure
was motivated by problems of interest to magnetically confined fusion plasmas. The data were presented and analyzed using
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the POD method in Ref. [15]. The phase space of the simulation is five-dimensional. However, as in Ref. [15], we limit atten-
tion to the denoising of the particles distribution function along two coordinates corresponding to the poloidal angle
h 2 ½0;2p� and the cosine of the pitch angle l 2 ½�1;1�. The remaining three coordinates have been averaged out for the pur-
pose of this study. The h coordinate is periodic, but the pitch coordinate l is not.



Table 2
Normalized root mean squared error e0 (25) for the histogram, POD and WBDE estimates of the particle distribution function for Np ¼ 105 at three different
times of the Maxwellian relaxation problem.

t ¼ 28 t ¼ 44 t ¼ 72

f H 0.14 0.17 0.12

f P 0.068 0.090 0.094

f W 0.064 0.094 0.088

Fig. 5. Reconstruction error, e1=2

N2
g

, as a function of Np
An important issue to consider is that the data were generated using a df code (DELTA5D). Based on an expansion on
q=L� 1 (where q is the characteristic Larmor radius and L a typical equilibrium length scale) the distribution function is
decomposed into a Maxwellian part fM and a first-order perturbation df represented as a collection of particles (markers)
df ðxÞ ¼
X

n

Wndðx� XnÞ; ð30Þ
like in Eq. (1) except that each marker is assigned a time dependent weight Wn whose time evolution depends on the Max-
wellian background [38]. The direct use of df ðxÞ is problematic in the WBDE method because df is not a probability density.
To circumvent this problem the WBDE method was applied after normalizing the df distribution so that

R
jdf jH ¼ 1, on a

128 � 128 grid.
Fig. 6 shows contour plots of the histogram f H corresponding to Np ¼ 32� 103; Np ¼ 64� 103, and Np ¼ 1024� 103 along

with the WBDE and POD reconstructed densities. The POD reconstructions were done using r ¼ 3 modes, as in Ref. [15]. It is
observed that comparatively high levels of smoothness can be achieved with considerably less particles by using either the
WBDE or POD reconstruction methods. The WBDE method provides better results for the df � 0 contours. This is because
POD modes are tensor product functions, that have difficulties in approximating the triangular shape of these contour lines.
Note that the boundary artifacts due to periodization of the Daubechies wavelets do not seem to be very critical. The large
wavelet coefficients associated with the discontinuity between the values of df at l ¼ 	1 are not thresholded, so that the
discontinuity is preserved in the denoised function. Fig. 7 compares the reconstruction errors in the WBDE, POD, and histo-
gram methods as functions of the number of particles. To evaluate the error we used f H computed with Np ¼ 1024� 103 as
the reference density f ref . As in the collisional transport problem, the error is reduced roughly by a factor 2 for both methods
compared to the raw histogram. Note that the scaling with Np is slightly better for WBDE than for POD.
3.3. Collisionless electrostatic instabilities

In this section we apply the WBDE and POD methods to reconstruct the single particle distribution function from discrete
particle data obtained from PIC simulations of a Vlasov–Poisson plasma. We consider a one-dimensional, electrostatic, col-
lisionless electron plasma with an ion neutralizing background in a finite size domain with periodic boundary conditions.
The dynamics of the distribution function is governed by the system of equations





Fig. 8.
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@tf þ v@xf þ @x/@v f ¼ 0 ð31Þ

@2
x/ ¼ f

Z
f ðx;v; tÞdv � 1 ð32Þ
where the variables have been non-dimensionalized using the Debye length as length scale and the plasma frequency as
time scale, and f is the normalized length of the system. Following the standard PIC methodology [1], we solve the Poisson
equation on a grid and integrate the particle equations in time using a leap-frog method. The reconstruction of the charge
density uses a triangular shape function. We consider two initial conditions: the first one leads to a bump-on-tail instability,
and the second one to a two streams instability.

3.3.1. Bump-on-tail instability
To trigger a bump-on-tail instability we initialized ensembles of particles by sampling the distribution function
f0ðx;vÞ ¼
2

3pf
1� 2qv þ 2v2

ð1þ v2Þ2
ð33Þ
using a pseudo-random number generator. This equilibrium is stable for q 6 1 and unstable for q > 1. The dispersion relation
and linear stability analysis for this equilibrium studied in Ref. [36] was used to benchmark the PIC code as shown in Fig. 8. In
all the computations presented here q ¼ 1:25 and Np ¼ 104; 105 and 106. The spatial domain size was set to f ¼ 16:52 to fit
the wavelength of the most unstable mode.

Since the value of q is relatively close to the marginal value, the instability grows weakly and is concentrated in a narrow
band in phase space centered around the point where the bump is located, v 
 1 in this case. In order to unveil the non-triv-
ial dynamics we focus the analysis in the band v 2 ð�3;3Þ, and plot the departure of the particle distribution function from
the initial background equilibrium. The POD method is applied directly to df H ¼ f Hðx;v ; tÞ � f0ðx;vÞ, but the WBDE method is
applied to the full f Hðx; v; tÞ, and f0ðx;vÞ is subtracted only for visualization. Note that because we are considering only a sub-
set of phase space, the effective numbers of particles, Np ¼ 7318; Np ¼ 73;143 and Np ¼ 731;472, are smaller than the nom-
inal numbers of particles, Np ¼ 104; Np ¼ 105 and Np ¼ 106, respectively.

Fig. 9 shows contour plots of df for different number of particles. Since the instability is seeded only by random fluc-
tuations in the initial condition, increasing Np delays the onset of the linear stability and this leads to a phase shift of the
nonlinear saturated regime. To aid the comparison of the saturated regime for different numbers of particles we have
eliminated this phase shift by centering the peak of the particle distributions in the middle of the computational domain.
A 256 � 256 grid was used in the WBDE method, and a 50 � 50 grid was used for the histogram and the POD methods.
The thresholds for the POD method where r ¼ 1; r ¼ 2, and r ¼ 3 for Np ¼ 104; Np ¼ 105 and Np ¼ 106, respectively. Ex-
cept for the case where Np ¼ 104, both the POD and WBDE estimates are very smooth, in agreement with the expected
behavior of f for this instability. It is observed that the level of smoothness of the histogram estimated using 106 particles
is comparable to the level of smoothness achieved after denoising using only 105 particles. One should mention that for
scales between L and J occurring in the WBDE algorithm we find that none of the wavelet coefficients are above the
threshold at each scale. In fact, a simple KDE estimate with a large enough smoothing scale would probably do the job
pretty well for this kind of instabilities which do not induce abrupt variations in f. Table 3 shows the POD and WBDE
reconstruction errors for Np ¼ 104 and Np ¼ 105. The error is computed using formula (25), taking for fref the histogram
obtained from the simulation with Np ¼ 106.
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vious one because the initial condition depends trivially on the velocity. Therefore, there is no statistical error in the sam-
pling of the distribution and the noise builds up only due to the self-consistent interactions between particles. In other
words, there is initially a strong correlation between particles’ coordinates, which will eventually almost vanish. This situ-
ation offers a way to test robustness of the WBDE method with respect to the underlying decorrelation hypothesis.

The analysis is focused on four stages of the instability, corresponding to t ¼ 40, 60, 100, and 400. Fig. 11 shows a com-
parison of the raw histogram, the POD and the WBDE reconstructed particle distribution functions at these four instants.
Grid sizes were Ng ¼ 1024 for the WBDE estimate, and Ng ¼ 128 for the two others. For t ¼ 40, no noise seems to have af-
fected the particle distribution yet, therefore a perfect denoising procedure should conserve the full information about the
particle positions. Although WBDE introduces some artifacts in regions of phase space that should contain no particles at all,
it remarkably preserves the global structure of the two streams. This is possible thanks to the numerous wavelet coefficients
close to the sharp features in f that are above the thresholds, in contrast to the bump-on-tail case. On the next snapshot at
t ¼ 60, the filaments have overlapped and the system is beginning to loose its memory due to numerical round-off errors.
The fastest filaments still visible on the histogram are not preserved by WBDE, but the most active regions are well repro-
duced. At t ¼ 100, the closeness between the histogram and the WBDE estimate is striking. To put it somewhat subjectively,
one may say that WBDE did not consider most of the rough features present at this stage as ’noise’, since they are not re-
moved. Only with the last snapshot at t ¼ 400 does the WBDE estimate begin to be smoother than the histogram, suggesting
that the nonlinear interaction between particles has introduced randomization in the system.

The POD method is able to track very well the fine and coarse scale structures of the particle density using a small number
of modes. In particular, for t ¼ 40, 60, 100, and 400 only r ¼ 28; r ¼ 27; r ¼ 18, and r ¼ 5 modes were kept. The decrease of
the number of modes with time results from the lost of fine scale features in the distribution function.
4. Summary and conclusion

Wavelet-based density estimation was investigated as a post-processing tool to reduce the noise in the reconstruction of
particle distribution functions starting from discrete particle data. This is a problem of direct relevance to particle-based
transport calculations in plasma physics and related fields. In particular, particle methods present many advantages over
continuum methods, but have the potential drawback of introducing noise due to statistical sampling.

In the context of particle-in-cell methods this problem is typically approached using finite size particles. However, this
approach, which is closely related to the kernel density estimation method in statistics, requires the choice of a smoothing
scale, h (e.g., the standard deviation for Gaussian shape functions) whose optimal value is not known a priori. A small h is
desirable to fit as many Debye wavelengths as possible, whereas a large h would lead to smoother distributions. This situ-
ation results from the compromise between bias and variance in statistical estimation. To address this problem we proposed
a wavelet-based density estimation (WBDE) method that does not require an a priori selection of a global smoothing scale
and that its able to adapt locally to the smoothness of the density based on the given discrete data. WBDE was introduced in
statistics [16]. In this paper we extended the method to higher dimension and applied it for the first time to particle-based
calculations. The resulting method exploits the multiresolution properties of wavelets, has very weak dependence on adjust-
able parameters, and relies mostly on the raw data to separate the relevant information from the noise.

As a first example, we analyzed a plasma collisional relaxation problem modeled by stochastic differential equations.
Thanks to the sparsity of the wavelet expansion of the distribution function, we have been able to extract the information
out of the statistical fluctuations by nonlinear thresholding of the wavelet coefficients. At late times, when the particle dis-
tribution approaches a Maxwellian state, we have been able to quantify the difference between the denoised particle distri-
bution function and its analytical counterpart, thus demonstrating the improvement with respect to the raw histogram. The
POD-smoothed and wavelet-smoothed particle distribution functions were shown to be roughly equivalent in this respect.
These results were then extended to a more complex situation simulated with a df code. Finally, we have turned to the Vla-
sov–Poisson problem, which includes interactions between particles via the self-consistent electric field. The POD and WBDE
methods were shown to yield quantitatively similar results in terms of mean squared error for a particle distribution func-
tion resulting from nonlinear saturation after occurrence of a bump-on-tail instability. We have then studied the denoising
algorithm during nonlinear evolution after the two-streams instability starting from two counter-streaming cold electron
beams. This initial condition violates the decorrelation hypothesis underlying the WBDE algorithm, and thus offers a good
way to test its robustness regarding this aspect. The WBDE method was shown to yield qualitatively good results without
changing the threshold values.

Defining a ’mode’ as one term in the decomposition of the particle distribution function into a sum, it appears that the
number of modes used in the POD reconstruction algorithm is considerably less than the number of modes needed using
wavelets. But to make a systematic comparison when it comes to storage requirements or data compression, one has to keep
in mind that POD modes are empirical and problem dependent whereas wavelet modes are known a priori. Because of this,
the specification of each POD mode requires 2Ng þ 1 components whereas the specification of each wavelet component only
requires one number: the amplitude of the mode. A potential limitation of the POD method is the lack of systematic a priori
thresholding criteria to determine the optimal number of modes. However, the information contained in the decay of the
spectrum of the singular values can be used to determine optimal ranks. For example, in Ref. [15] a criterion based on
the relative rate of decay of the spectrum provided consistent good results for denoising Monte-Carlo particle data.
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To test and compare the proposed denoising algorithms we have focused on the distribution function because it is in
some sense the most basic and fundamental quantity in PIC and Monte-Carlo simulations. However, it would be interesting
to explore the use of other fields like for example fluxes, charge densities, or derivatives of f rather than f itself. Lack of space
did not allow us to elaborate more on this issue that we look forward to address in a future publication. Regarding this, it is
important to keep in mind that what to chose to compare the algorithms, beyond the obvious choice of the raw f, depends on
the physics of the specific problem of interest. For example, calculations that require evaluation of quasilinear fluxes in
wave–particle interaction problems might benefit from denoising gradients of f. On the other hand, active denoising in Vla-
sov–Poisson codes might only require denoising of the charge distribution (i.e. the integral of f in velocity) whereas denoising
the current (first velocity moment of f) would be important in Vlasov–Maxwell codes. Other specific needs might arise when
coupling particle codes to continuum codes, e.g. when performing extended MHD calculations. It may also be of interest to
focus on the reconstruction error of the force fields, which determine the evolution of the simulated plasma. These forces
depend on f through integrals, and statistical analysis of the estimation of f using weak norms [39] might be beneficial.

The computational cost of our method scales linearly with the number of particles and with the grid resolution. Therefore,
WBDE is an excellent candidate to be performed at each time step during the course of a simulation. Once the wavelet
expansion of the denoised particle distribution function is known, it is possible to continue using the wavelet representation
to solve the Poisson equation [40] and to compute the forces. The moment conservation properties that we have demon-
strated in this paper should mitigate the unavoidable dissipative effects implied by the smoothing stage. In Ref. [5], a dissi-
pative term was introduced in a global PIC code to avoid unlimited growth of particle weights in df codes, and this was
shown to improve long time convergence of the simulations. It would be of interest to assess if the nonlinear dissipation
operator corresponding to WBDE has the same effect.

There are several potential extensions and applications of the techniques and results presented. Some of these include
high dimensional problems, active denoising, and applications to more complex plasma models. The implementation of
the WBDE algorithm to high (greater than two) dimensions is in principle straightforward. The POD method on the other
hand can be more challenging since the SVD is applied to matrices. One simple way to circumvent this problem is to ‘‘fold”
high dimensional data into matrices. However, this straightforward approach can be numerically inefficient. A promising
alternative would be to use tensor decomposition techniques like the method of generalized low rank approximation of
matrices used in [15]. The problem of active denoising, and the application of the reconstruction algorithms to more complex
plasma models like Vlasov–Maxwell and gyrokinetics is a key follow up of the results presented here. Also, it would be of
interest to explore applications to the problem of coupling particle and continuum codes in extended MHD and radio-fre-
quency heating studies in fusion plasmas.
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